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ABSTRACT
Current hearing loss classification relies predominantly on Pure-Tone Average (PTA), yet clinicians recognize
that speech recognition abilities—particularly in noise—vary substantially among patients with comparable
PTAs. Whether speech recognition testing provides discriminative information beyond pure-tone audiometry
remains poorly quantified. We present a statistical framework to systematically identify which audiological
measurements provide optimal discrimination between severity categories and quantify the added value of
speech recognition testing. Analyzing 48,144 adults (ages 40-90) with symmetric hearing loss from Amplifon
France databases, we applied multivariate hypothesis testing, advanced statistical methods for capturing com-
plex dependencies between measurements, and bootstrap resampling to construct discriminative features from
pure-tone audiometry (125-8000 Hz) and speech recognition testing in quiet (SRTQ) and noise (SRTN ). Un-
supervised clustering evaluated whether engineered features naturally separate established severity categories.
Speech-in-noise testing emerged as the strongest discriminator, with features capturing complex dependen-
cies achieving exceptional discriminative power (Silhouette score 0.94) compared to PTA-based features alone
(0.50)—an 88% improvement. Mid-frequency pure-tone thresholds (1000-4000 Hz) showed highest discrimi-
native value among audiometric measures. Adjacent severity categories showed limited discrimination through
univariate measures but clear separation through multivariate feature combinations. These findings provide
empirical evidence that speech recognition testing, particularly in noise, contributes substantial discrimina-
tive information beyond pure-tone audiometry, supporting extension of hearing loss classification systems to
incorporate suprathreshold measures alongside threshold-based categories.

Keywords Hearing loss classification, Speech-in-noise testing, Pure-tone audiometry, Multivariate analysis, Clinical
decision-making
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1 Introduction

Hearing loss affects over 430 million people worldwide who require rehabilitation, with projections rising to 700
million by 2050 [1, 2]. Clinical assessment primarily relies on the Pure-Tone Average (PTA)—the mean hearing
threshold at 500, 1000, 2000, and 4000 Hz—to classify impairment severity. Systems such as those proposed by the
WHO, BIAP, and ASHA [3, 4] define discrete categories ranging from slight to severe hearing loss based on these
PTA cutoffs.

PTA-based classification remains widely adopted because it offers a simple and interpretable summary of hearing
sensitivity in the frequency range most critical for speech understanding. The derived severity categories facilitate
clinical communication and treatment planning: a “moderate” loss conveys immediate meaning to both clinicians and
patients. This approach has been validated through decades of practice [5, 6] and is easily standardized across clinics
and populations.

However, the reliance on PTA as a single, average measure has intrinsic limitations. PTA treats hearing loss as one-
dimensional—captured solely by detection thresholds—while auditory function is inherently multidimensional, en-
compassing both sound detection and speech comprehension, particularly under noisy conditions. Moreover, applying
discrete category boundaries to a continuous scale introduces artificial divisions [7, 8]. Most importantly, PTA-based
grading provides no principled method to integrate suprathreshold measures such as speech recognition, even though
these tests capture processing abilities beyond simple audibility [9, 10]. Individuals with similar PTAs may show large
differences in speech understanding [11, 10], underscoring that these measurements reflect complementary and partly
independent auditory dimensions.

The World Health Organization’s World Report on Hearing (2021) acknowledges this explicitly: although WHO
hearing loss grades are defined by PTA cutoffs, the report notes that speech understanding cannot be inferred from
PTA alone [4]. This recognition highlights a persistent gap between threshold-based classification and functional
hearing ability—one that suprathreshold measures may help to bridge.

To address this gap, researchers have developed composite indices and data-driven auditory profiles. Early work com-
bined multiple test results [12, 13], while recent approaches apply unsupervised learning to identify hearing subtypes
directly from clinical data [14, 15, 16, 17]. [18] developed Common Audiological Functional Parameters (CAFPAs)
demonstrating the need for comprehensive test batteries beyond PTA [19, 20, 21]. Extended assessment frameworks
have explored high-frequency audiometry [22, 23] and suprathreshold processing measures [24, 25].

Despite these advances, a central question remains: do speech recognition tests provide discriminative information
beyond pure-tone audiometry, and which measurements most effectively differentiate hearing loss severity levels?
Existing studies often combine measures without quantifying their relative contributions, identify clusters without
linking them to established severity grades, or refine categorical boundaries without determining which variables best
support them. The discriminative value of each measure has not been systematically quantified.

This question has both scientific and clinical relevance. In practice, pure-tone audiometry typically initiates assess-
ment, guiding whether further tests are warranted [5]. Identifying which additional measures contribute the most
discriminative information could optimize testing protocols—especially for speech recognition, which may reveal
suprathreshold deficits not reflected in detection thresholds alone.

The present study systematically quantifies the discriminative power of audiological measurements—individually and
in combination—across established severity categories. We focus on whether speech recognition tests provide addi-
tional information beyond PTA and on which frequency ranges or dependencies most enhance severity discrimination.

Answering this question requires moving beyond traditional univariate approaches to capture complex measurement
interdependencies. Standard analyses examining measurements in isolation cannot reveal whether, for example, the
combination of speech-in-noise performance and mid-frequency hearing thresholds provides discriminative informa-
tion that neither measurement alone captures. Patients with similar average thresholds but different patterns of speech-
threshold dependency may belong to functionally distinct severity groups—relationships that traditional correlation-
based methods would miss entirely.

To this end, we integrate complementary statistical methods: univariate and multivariate hypothesis testing, copula-
based dependency analysis, and unsupervised clustering. Copula methods capture complex relationships between
measurements that traditional correlation cannot detect—including whether relationships differ across severity levels
and whether extreme values (very poor or very good performance) on one measure predict extreme values on another.
For example, speech recognition and pure-tone thresholds might show different dependency patterns in severe hearing
loss than in mild loss, or certain combinations of deficits might be characteristic of specific severity categories. Boot-
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strap procedures address class imbalance, and clustering validation tests whether identified features naturally align
with clinical severity categories.

We analyze data from a large clinical database of 48,144 adults assessed at Amplifon France centers, including pure-
tone audiometry (11 frequencies, 125–8000 Hz) and speech recognition in quiet (SRTQ) and in noise (SRTN ). SRTN

is of particular interest as it reflects real-world listening challenges and suprathreshold auditory processing.

Our objectives are fourfold:

1. Quantify the added discriminative value of speech recognition tests beyond pure-tone audiometry.

2. Identify which measurements and frequency regions provide the most diagnostic information for severity
differentiation.

3. Assess whether multivariate combinations capturing interdependencies outperform individual measures, par-
ticularly between adjacent severity categories.

4. Develop and validate a generalizable statistical framework to quantify discriminative value using multivariate
testing, copula-based analysis, and clustering validation.

This work contributes both to methodological development and to clinical practice. By identifying which measures
best distinguish hearing loss categories, it informs evidence-based prioritization of audiological tests, supports ex-
tended classification systems incorporating suprathreshold information, and ultimately enhances the precision and
efficiency of clinical hearing assessment.

2 Methods

This section details the statistical methodology used to identify and quantify the discriminative power of audiological
features across hearing loss severity categories. Rather than developing a new classification system, our approach
systematically evaluates which measurements—and which statistical transformations of these measurements—most
effectively distinguish between established PTA-based severity categories (slight, mild, moderate, moderately severe,
severe).

Our methodology comprises three integrated stages. First, we apply a comprehensive battery of statistical hypothesis
tests to identify which audiological measurements show significant differences between severity categories. These
tests examine means, variances, distributions, and complex multivariate dependencies, providing a principled basis
for feature selection. Second, we employ sophisticated feature engineering techniques, including parametric and
non-parametric bootstrap methods combined with copula-based dependency analysis, to transform raw measurements
into a higher-dimensional feature space that captures discriminative information. Third, we validate the discriminative
power of engineered features through unsupervised clustering analysis, objectively assessing whether selected features
naturally separate patients into severity categories without forcing predetermined classifications.

Throughout this process, we maintain focus on quantifying discriminative value rather than proposing clinical replace-
ments. By comparing clustering performance across different feature sets—from raw measurements to sophisticated
statistical transformations—we establish which audiological information provides the strongest evidence for sever-
ity differentiation. This framework bridges rigorous statistical methodology with clinical interpretability, enabling
evidence-based assessment of measurement priorities in audiological protocols.

2.1 Notation and Data Structure

We establish formal notation for describing audiological measurements and their transformations. Uppercase notation
denotes random quantities such as random variables, while lowercase denotes realizations obtained from measure-
ments. Bold face indicates vectors, and non-bold face represents scalars or matrices. Subscripts index dimensions of
arrays or sets.

Denote by XN×D the random variables for measurements and its realizations xN×D from observed experiments,
where N represents total sample size and D the number of attributes collected (13 total: pure tone thresholds at 11
frequencies [125, 250, 500, 750, 1000, 1500, 2000, 3000, 4000, 6000, 8000 Hz], speech recognition thresholds in
quiet (SRTQ) and noise (SRTN )).

The observed attributes are mapped into d′ features, where d′ ≥ D, obtained from transformations of these D observed
attributes. Data comprise G = 5 labeled groups corresponding to hearing loss severity categories, with the g-th group
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data consisting of ng participants each having D observations, denoted by {x(g)
ng×D}. The j-th participant in group g

has observation vector x(g)
j = [x

(g)
j,1 , x

(g)
j,2 , . . . , x

(g)
j,D]. Note that

∑5
g=1 ng = N .

Denote G = {1, . . . , G} the set of groups such that g ∈ G for every g. The five groups correspond to: group 1 (g = 1)
slight hearing loss (16-25 dB HL); group 2 (g = 2) mild (26-40 dB HL); group 3 (g = 3) moderate (41-60 dB HL);
group 4 (g = 4) moderately severe (61-80 dB HL); group 5 (g = 5) severe (>81 dB HL).

Population mean and standard deviation for the g-th group attribute d are denoted by µ
(g)
d and σ

(g)
d respectively, with

sample estimators µ̂(g)
d and σ̂

(g)
d . The pooled variance estimator is denoted by S2

p , and F
X

(g)
d

(u) denotes the cumulative

density function of random variable X
(g)
d , referring to attribute d of the g-th group.

2.2 Statistical Tests for Feature Discrimination

To systematically identify which audiological measurements provide discriminative information between hearing loss
severity categories, we employ a comprehensive battery of statistical hypothesis tests. These tests evaluate whether
sample quantities differ significantly between categories, thereby identifying potential features for our discriminative
framework. Table 1 presents the complete test battery with respect to two general groups (denoted as group i and
group j), representing one pairwise combination between hearing loss categories. These tests serve to screen and
select relevant test statistics that capture discriminative patterns across severity levels.

The test battery encompasses three primary classes of univariate analyses. The first class examines mean differences
through both standard t-Student tests (assuming equal variances) and Welch’s t-test [26] (accommodating unequal
variances). The second class targets variance differences using the variance ratio test (F-test) [27] and Bartlett Test
[28], assessing whether variances across groups can be considered equal. The third class investigates distributional
differences through the Kolmogorov-Smirnov test [29], which is sensitive to differences in location and shape of
empirical distribution functions, and the Cramer-von-Mises test with different weighting functions [30], which can be
particularly effective for detecting differences in heavy-tailed distributions.

Beyond univariate approaches, we employ multivariate tests to examine interdependencies between audiological mea-
surements. The sparse covariance matrix comparison method [31] enables detection of subtle differences between
adjacent hearing loss categories where covariance differences may be sparse. Tukey’s Honestly Significant Difference
(HSD) test [32] provides controlled pairwise mean comparisons across multiple groups while controlling family-wise
error rates. For capturing complex dependence structures between different audiological measurements, we employ
copula-based tests [33], which evaluate equality between dependence structures while separating these from marginal
behaviors.

2.2.1 Dependence and Concordance Measures

While the copula test provides insights into overall dependence structure, additional measures of dependence and
concordance offer complementary information about relationships between audiological measurements. These mea-
sures capture different aspects of dependence structure between measurement coordinates and remain invariant under
monotone transformations of the data [33, 34, 35].

For any pair of measurements (Xld, Ymd′), where l,m index observations and d, d′ index attributes from groups i and
j respectively, with corresponding sample sizes ni and nj , we transform the data to ranks:

Uld,ni
=

rank(Xld)

ni + 1
, Vmd′,nj

=
rank(Ymd′)

nj + 1
.

We employ multiple copula-based dependence measures including modified Kendall’s tau and Spearman’s rho (cap-
turing overall concordance patterns), sign-based association and Gini-based measures (robust to outliers and sensitive
to tail behavior), local Gaussian correlation, and tail dependence coefficients (identifying extreme value relationships).
These measures collectively provide comprehensive characterization of dependence structures in audiological data,
enabling identification of which measurement pairs exhibit the strongest discriminative relationships across severity
categories. Complete formulas for all copula-based measures are provided in Supplementary Appendix, Table S1.
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Table 1: Statistical tests for feature discrimination. For each test we provide: the quantity tested, test name, null
and alternative hypotheses (H0 and H1), test statistic, and distribution under the null with degrees of freedom where
appropriate.

Univariate Tests

Feature Test H0 H1 Test Statistic Distribution & DOF

Mean T-test µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d

T =

(
X̄

(g)
d − X̄

(h)
d

)
S2
p

√
1

ng
+ 1

nh

Student’s t,

DOF: ng + nh − 2

Mean Welch
µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d

T =

(
X̄

(g)
d − X̄

(h)
d

)
√

S2(g)

d
ng

+
S2(h)

d
nh

Student’s t,

T-test DOF: Welch–Satterthwaite

Variance Variance
σ2(g)

d = σ2(h)

d σ2(g)

d ̸= σ2(h)

d

F =
S2(g)

d

S2(h)
d

Fisher–Snedecor

Ratio DOF: F(ng−1, nh−1)

Distr. Kolmogorov F
(g)
d (x) = F

(h)
d (x) F

(g)
d (x) ̸= F

(h)
d (x) D = supx

∣∣∣F̂ (g)
d (x) − F̂

(h)
d (x)

∣∣∣ Free
Smirnov (no DOF)

Distr. Cramer-Von F
(g)
d (x) = F

(h)
d (x) F

(g)
d (x) ̸= F

(h)
d (x) Q = ngnh

∫ ∞
−∞ w(x)[F̂

(g)
d (x)− Free

Mises (no DOF)
F̂

(h)
d (x)]2dF̂

(h)
d (x)

Multivariate Tests

Variance Bartlett σ2(g)

d = σ2(h)

d σ2(g)

d ̸= σ2(h)

d T =
(N−G) ln(S2

p)−
∑G

l=1(ng−1) ln(S2(g)

d )

1+

(
1

3(G−1)

)[(∑G
l=1

1
ng−1

)
− 1

N−G

] Chi-Square

Test ∀(g, h) for at least one (g, h) χ2
(G−1)

Covariance Sparse Σg = Σh Σg ̸= Σh Mn − 4 log p + log log p Type I extreme
Cov. value (no DOF)

Tukey Tukey µ
(g)
d = µ

(h)
d µ

(g)
d ̸= µ

(h)
d W =

max(g,h)

(
X̄

(g)
d

−X̄
(h)
d

)
√√√√ 1

2

S2(g)
d

+S2(h)
d

ng,d+nh,d

Studentized range

HSD ∀(g, h) for at least one g, h DOF: q(G, N−G)

Copula Copula Cg = Ch Cg ̸= Ch Eng,nh
=

Ĉg−Ĉh√
1

ng
+ 1

nh

Free

Test (no DOF)

2.3 Feature Engineering

Building upon statistically identified discriminative features, we employ bootstrap-based feature engineering to create
robust representations suitable for clustering analysis. This approach addresses two key challenges: (1) class imbal-
ance across severity categories, and (2) the need for sufficient sample sizes to reliably assess discriminative power.

2.3.1 Parametric and Non-Parametric Bootstrap Approaches

Bootstrap methods [36] provide a simulation-based framework for generating additional samples while preserving
underlying statistical properties. We implement both parametric and non-parametric approaches to ensure robustness
against distributional assumptions.

Parametric Bootstrap The parametric approach fits a model f(x|θ) to observed data, then generates new samples
from this fitted distribution.
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Parametric Bootstrap Procedure

Input: Parametric model f(x|θ̂) fit to X1, . . . , Xn

For i = 1, 2, . . . , B:
1. Simulate iid samples X∗

1 , . . . , X
∗
n ∼ f(x|θ̂)

2. Compute statistic T ∗ := T (X∗
1 , . . . , X

∗
n)

Output: Empirical distribution of T ∗ across B simulations

Non-Parametric Bootstrap The non-parametric approach uses the empirical distribution, placing mass 1
n at each

observed value, generating samples through resampling with replacement.

Non-Parametric Bootstrap Procedure
Input: X1, . . . , Xn

For i = 1, 2, . . . , B:
1. Sample X∗

1 , . . . , X
∗
n with replacement from X1, . . . , Xn

2. Compute statistic T ∗ := T (X∗
1 , . . . , X

∗
n)

Output: Empirical distribution of T ∗ across B simulations

Copula-Based Bootstrap Extensions To capture multivariate dependencies, we extend bootstrap methods using
copula functions, which separate dependence structure from marginal distributions.

Parametric Copula Bootstrap: Assumes joint distribution FX1,...,Xd
(x1, . . . , xd) = Cθ(F1(x1), . . . , Fd(xd)),

where Cθ is a t-copula with parameters θ = (R, ν).

Parametric Student-t Copula Bootstrap

Input: Data matrix Xn×d; Fitted t-copula parameters θ = (R, ν); Marginal distributions F̂1, . . . , F̂d

For i = 1, 2, . . . , B:
1. Sample (ui1, . . . , uid) ∼ tCopula(R, ν), i = 1, . . . , n
2. Structure as U∗

1 , . . . , U
∗
n where U∗

i = (ui1, . . . , uid)
3. Compute statistic T ∗ := T (U∗

1 , . . . , U
∗
n)

Output: Empirical distribution of T ∗ based on B replicates

Non-Parametric Copula Bootstrap: Estimates a flexible Bernstein copula Ĉ from rank-transformed data.

Non-Parametric Bernstein Copula Bootstrap

Input: Data matrix Xn×d; Bernstein copula fit Ĉ; Marginal distributions F̂1, . . . , F̂d

For i = 1, 2, . . . , B:
1. Fit Bernstein copula Ĉ to rank-transformed data
2. Sample (ui1, . . . , uid) ∼ Ĉ, i = 1, . . . , n
3. Structure as U∗

1 , . . . , U
∗
n where U∗

i = (ui1, . . . , uid)
4. Compute statistic T ∗ := T (U∗

1 , . . . , U
∗
n)

Output: Empirical distribution of T ∗ based on B replicates

2.3.2 Feature Construction from Bootstrap Samples

For each statistically significant feature identified through hypothesis testing, we generate n′ new samples for each
group g to form balanced feature vectors suitable for clustering analysis. Let Xg,(dk) denote observed data for group
g ∈ G and attribute dk.

Bootstrap Setup We generate N ′ = 5 × n′ new samples (ensuring balanced representation across all 5 groups)
under both parametric and non-parametric approaches:

1. Parametric (Normal): Model Xg,(dk) as N (µ̂g, σ̂
2
g)

2. Non-Parametric: Sample n′ times with replacement from Xg,(dk)
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Feature Construction for Univariate Tests For each significant test type, we derive corresponding summary statis-
tics as features:

• Mean Test: Compute bootstrapped means for each group, concatenating across groups:

x̃N ′×1 =
[
x̄
(1)
1,(dk)

, . . . , x̄
(1)
n′,(dk)

, . . . , x̄
(5)
1,(dk)

,

. . . , x̄
(5)
n′,(dk)

]⊤
• Variance Test: Compute bootstrapped variances:

x̃N ′×1 =
[
s2

(1)

1,(dk)
, . . . , s2

(1)

n′,(dk)
, . . . , s2

(5)

1,(dk)
,

. . . , s2
(5)

n′,(dk)

]⊤
• Distribution Test: Compute robust summaries (median, IQR, 5th/95th percentiles):

x̃N ′×4 =
[(

med(1)
1,(dk)

IQR(1)
1,(dk)

p5
(1)
1,(dk)

p95
(1)
1,(dk)

)
, . . .

]⊤

Feature Construction for Multivariate Tests - Copula For multivariate relationships identified through copula
tests between attributes dk of group g and dl of group h:

• Rank Transformations: Transform bootstrapped samples to rank scale:

x̃rank
N ′×2 =

[(
U

(g)
1,(dk)

U
(h)
1,(dl)

)
, . . . ,(

U
(g)
n′,(dk)

U
(h)
n′,(dl)

)]⊤
• Dependence Measures: Compute copula-based dependence measures (Supplementary Appendix, Table S1):

x̃cop
N ′×M =

[
(τ(g,h)

cop,1 ρ
(g,h)
cop,1 · · · λ

(g,h)
L,1 λ

(g,h)
U,1 ) , . . .

]⊤

Feature Construction for Covariance and Bartlett Tests For significant covariance relationships and variance
comparisons across groups, we similarly construct correlation and variance ratio features through bootstrap sampling.

This feature engineering process produces feature matrices:

X̃N
N ′×D′ , X̃NP

N ′×D′

corresponding to Normal parametric (N ) and Non-Parametric (NP) bootstrapping, with sample sizes n′ ∈
{50, 500, 1000, 5000} to assess the effect of bootstrap sample size on discriminative power.

2.3.3 Feature Space Dimensionality and Combinations

The feature engineering process produces feature spaces of varying dimensionality depending on the type and combi-
nation of features employed. Table 2 summarizes the dimensionality of different feature categories.

Table 2: Feature space dimensionality for different feature types and combinations.
Feature Type Unscreened Screened

Dimension Dimension

Individual Features

Frequency Univariate 11 3
Speech Univariate 2 2
Frequency Copula 165 99
Speech Copula 90 81

Combined Features

Univariate (Freq + Speech) 13 8
Univariate Full (Mean + Var + Dist) 39 24
Copula (Freq + Speech) 255 180
All Features (Univariate + Copula) 741 534

7



For individual features, screening based on statistical significance (p < 0.05) substantially reduces dimensionality
while retaining discriminative power. Frequency univariate features reduce from 11 to 3 dimensions when screened,
focusing on the most significant frequencies (1000Hz, 2000Hz, 4000Hz) identified through hypothesis testing. Speech-
related features maintain both dimensions (SRTQ and SRTN ) as both prove significant.

Copula-based features represent the highest-dimensional category, with screened versions maintaining 81-99 dimen-
sions for speech and frequency measures respectively. These capture complex dependencies between different audio-
logical measurements, providing rich discriminative information.

Combined feature sets demonstrate the trade-off between complexity and information content. Univariate combina-
tions maintain relatively low dimensionality (8-39 dimensions) while integrating multiple statistical measures. Full
cross-feature combinations incorporating both univariate and copula measures span higher dimensions (192-741), par-
ticularly in unscreened versions.

The screening process plays a crucial role in dimensionality reduction while preserving discriminative power. This hi-
erarchical organization of features, from individual measures to sophisticated combinations, allows flexible adaptation
to different clustering scenarios while maintaining interpretability.

2.4 Clustering Analysis for Discriminative Power Assessment

To objectively evaluate the discriminative power of engineered features, we employ unsupervised clustering methods.
Unlike supervised approaches that force predetermined classifications, unsupervised methods assess whether identified
features naturally separate patients into meaningful groups corresponding to severity categories.

We employ two complementary clustering approaches: K-means clustering provides efficient partitioning based on
centroid distances, while hierarchical clustering with Ward’s method captures nested relationships reflecting progres-
sive hearing loss patterns. Both methods are configured to identify k = 5 clusters, corresponding to the five established
severity categories.

The K-means algorithm partitions observations into clusters by iteratively minimizing within-cluster sum of squares.
For robustness, we perform multiple restarts with different random initializations, selecting the solution with minimal
total within-cluster variance.

Hierarchical clustering with Ward’s method builds a dendrogram revealing nested cluster structure. Ward’s criterion
minimizes total within-cluster variance while merging clusters, making it particularly suitable for detecting gradations
in hearing loss severity.

Clustering performance is evaluated using the Silhouette score [37], which quantifies both cluster cohesion (how
similar objects are within clusters) and separation (how distinct clusters are from each other). Scores range from −1
to 1, with values exceeding 0.5 indicating well-separated clusters and 1.0 representing perfect separation.

Full technical details of clustering algorithms and additional evaluation metrics are provided in the Supplementary
Appendix.

3 Data Description

This section describes the audiological dataset used to evaluate discriminative power of different measurements and
feature transformations across hearing loss severity categories.

3.1 Data Acquisition and Testing Procedures

We utilize data from Amplifon France hearing aid fitting practices, provided in pseudonymized form to Institut Pas-
teur under the BIG DATA AP project. The Commission Nationale de l’Informatique et des Libertés authorized data
processing on April 05, 2024.

The dataset includes participants’ age, sex assigned at birth, pure-tone audiograms for both ears, and speech recog-
nition thresholds in quiet and noise. Hearing loss severity was categorized using Pure-Tone Average (PTA) based on
thresholds at 0.5, 1, 2, and 4 kHz [3], following ASHA classification (Table 3).

We focused on participants aged 40-90 years with symmetric hearing loss, defined by PTA difference less than 15
dB between ears [38]. This age range was selected based on data availability and completeness. The final dataset
comprises 48,144 participants. Data on race or ethnicity were not collected per French legal restrictions [39].
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Table 3: Pure-tone average (PTA) categories following ASHA classification [3]. Our dataset contains no participants
with normal hearing.

Degree of hearing loss PTA range (dB HL)

Normal –10 to 15
Slight 16 to 25
Mild 26 to 40

Moderate 41 to 55
Moderately severe 56 to 70

Severe 71 to 90

3.2 Dataset Characteristics

Table 4 summarizes descriptive statistics for the complete dataset. Mean participant age is 73 years (SD = 9.73),
ranging from 40 to 90 years. Mean hearing thresholds increase with frequency, from approximately 30 dB HL at 125
Hz to 72 dB HL at 8 kHz, with standard deviations ranging from 13 to 19 dB HL. Mean SRTN is 4.43 dB SNR (SD =
3.96), while mean SRTQ is 45.97 dB SPL (SD = 11.56).

Table 4: Descriptive statistics for the complete sample. Variables include age, audiogram frequencies, SRTN (dB
SNR) and SRTQ (dB SPL).

Statistics Age Frequencies (Hz) SRTN SRTQ

125 250 500 750 1000 1500 2000 3000 4000 6000 8000

Mean 72.98 30.48 31.24 33.83 36.40 38.11 45.08 48.48 55.79 61.74 70.35 71.71 4.43 45.97
Median 74.00 30.00 30.00 30.00 35.00 35.00 45.00 50.00 55.00 60.00 70.00 70.00 4.00 45.00

SD 9.73 13.19 14.50 15.14 15.43 15.68 16.18 16.28 16.50 16.97 18.24 18.75 3.96 11.56
Min 40 -10.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00 -5.00 3.00 -10.00 5.00
Max 90 120.00 120.00 120.00 120.00 120.00 120.00 120.00 125.00 125.00 125.00 130.00 20.00 80.00

Figure 1 shows sample distribution across severity categories. The majority fall into Moderate (20,246) and Mild
(18,979) categories. Moderately severe (4,826) and slight (3,704) categories have fewer individuals, while severe
(389) represents the smallest group, indicating lower prevalence of severe hearing loss.

3704

18979
20246

4826

3890

5000

10000

15000
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Figure 1: Sample size distribution across PTA-based hearing loss severity categories.
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Figure 2 displays distributions via violin plots. Pure-tone thresholds vary across age groups, with lower thresholds
from 40-45 to 65-70 years, particularly at lower frequencies (125-1000 Hz). Thresholds increase markedly at higher
frequencies with age, rising from 55.44 dB (40-45 years) to 81.85 dB (85-90 years), indicating age-related hearing
loss. SRTN and SRTQ values also increase with age: mean SRTN rises from 2.79 dB to 6.94 dB, while SRTQ increases
from 40.70 dB to 53.73 dB.

Moderately severe Severe

Slight Mild Moderate

12
5
25

0
50

0
75

0
10

00
15

00
20

00
30

00
40

00
60

00
80

00 12
5
25

0
50

0
75

0
10

00
15

00
20

00
30

00
40

00
60

00
80

00

12
5
25

0
50

0
75

0
10

00
15

00
20

00
30

00
40

00
60

00
80

00

0

50

100

0

50

100

Frequency Left Audiogram

dB
 H

L

Moderately severe Severe

Slight Mild Moderate

SRT Q

SRT N

SRT Q

SRT N

SRT Q

SRT N

0

20

40

60

80

0

20

40

60

80

Speech Tests

dB
 S

P
L/

S
N

R

Figure 2: Violin plots of hearing thresholds at different frequencies (left) and SRTQ, SRTN (right) by hearing loss
degree for the left ear. X-axis on left shows frequencies 125-8000 Hz; x-axis on right shows speech tests. Y-axis shows
thresholds in dB HL (left) and dB SPL/SNR (right). Due to symmetric hearing loss, left ear was selected; right ear
shows equivalent patterns.

This dataset provides robust foundation for evaluating discriminative power of audiological measurements across
hearing loss severity categories, with sufficient sample sizes in most categories and comprehensive measurement
coverage including both pure-tone and speech recognition assessments.

4 Results

This section presents a systematic evaluation of discriminative power across audiological measurements and their
statistical transformations. Rather than proposing a new classification system, we quantify which features—from
raw measurements to sophisticated statistical contrasts—most effectively distinguish between established hearing loss
severity categories. The analysis progresses through exploratory visualization, rigorous feature screening via hypoth-
esis testing, feature engineering through bootstrap methods, and unsupervised clustering to validate discriminative
capacity.

Throughout this section, we refer to speech recognition in quiet as SRTQ and speech recognition in noise as SRTN .
This notation maintains consistency with existing labels in tables and plots.

4.1 Audiological Measurement Patterns Across Severity Categories

Figure 2 presents violin plots for audiological measurements across hearing loss categories, revealing both progres-
sive patterns and substantial overlap that motivate our feature engineering approach. Pure-tone thresholds show clear
progression across severity categories (slight to severe), yet with considerable overlap between adjacent groups. Vari-
ability increases notably in speech recognition tasks as hearing loss becomes more severe, potentially influenced by
ceiling effects in adaptive testing for the most impaired cases.

This increased heterogeneity in performance patterns indicates that simple threshold-based discrimination between
categories using raw measurements alone will be insufficient. The complex distributions cannot be adequately charac-
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terized by single descriptive statistics (mean, median, variance). This limitation reflects a fundamental characteristic
of PTA-based categorization: categories are defined using audiogram thresholds rather than incorporating speech test
information, creating inherent challenges for multivariate discrimination.

These observations establish the empirical foundation for our feature engineering approach. The overlapping dis-
tributions in raw measurement space demonstrate why sophisticated statistical transformations—capturing contrasts,
dependencies, and higher-order relationships—are necessary to achieve effective discrimination between severity lev-
els.

4.2 Evaluating Separability in High-Dimensional Feature Space

To assess whether raw audiological data naturally separate into severity categories, we employ t-Distributed Stochas-
tic Neighbor Embedding (t-SNE) [40], mapping data into an optimal 2-dimensional representation (Figure 3). This
dimensionality reduction technique reveals the inherent structure of measurement relationships without imposing pre-
determined classifications.
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Figure 3: t-SNE visualization of raw audiological data demonstrating limited natural separation between severity
categories. Left: Audiogram data alone shows substantial overlap between adjacent categories. Middle: Speech
recognition scores (SRTQ and SRTN combined) reveal slightly improved differentiation, particularly for severe cases.
Right: Combined audiogram and speech data illustrates enhanced but incomplete clustering. Color gradations repre-
sent severity levels from Slight to Severe. The x and y axes represent the first and second t-SNE dimensions.

The analysis reveals limited natural separation using raw measurements. Audiogram data alone (left panel) exhibits
visible clustering but with substantial overlap between adjacent categories, particularly mild-moderate groups—an
expected finding given that PTA categories impose discrete thresholds on continuous scales. Speech recognition
scores (middle panel) show clearer separation for severe cases but significant overlap persists. Notably, the speech
panel lacks the progressive ordering visible in audiogram data, suggesting these measures capture complementary
discriminative information beyond pure-tone thresholds.

Combined analysis (right panel) indicates that integrating measurement types improves category separation but does
not achieve complete discrimination without further transformation. This stems from the fundamental tension between
continuous hearing function and discrete clinical categories. Raw audiological measurements, even when optimally
projected, cannot effectively discriminate between severity levels without sophisticated feature engineering.

This motivates our statistical framework: transforming raw measurements into feature spaces that explicitly capture
discriminative contrasts between categories, which we explore in subsequent sections.

4.3 Quantifying Discriminative Power Through Statistical Testing

We systematically evaluate discriminative power by applying the statistical test battery (Section 2.2) to all audiological
measurements across severity category pairs. This identifies which measurements and measurement properties show
significant differences between categories, providing principled feature selection.
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Figure 4: Heatmap of statistical significance (p-values) across severity categories, test types, and audiometric frequen-
cies. Y-axis shows five statistical tests (T-test, Welch, Variance, Kolmogorov, CvM) applied to pure-tone thresholds
(125-8000 Hz) and speech measures (SRTQ, SRTN ) on x-axis. Color intensity indicates significance level: darker
red represents stronger significance (p < 0.001), grey/blue indicates weaker discrimination. Adjacent categories show
limited discriminative power, while non-adjacent categories demonstrate robust statistical separation, particularly in
speech-critical frequencies (1000-4000 Hz).

Figure 4 reveals distinct patterns in univariate discriminative power. Discriminative strength increases substantially
with severity gap between categories. For adjacent categories (e.g., Slight-Mild), the heatmap shows predominantly
grey cells across test types and frequencies, indicating limited discriminative power of individual measurements. This
fundamental limitation suggests univariate measures alone cannot distinguish adjacent severity levels, necessitating
multivariate feature combinations.

In contrast, non-adjacent categories (e.g., Slight vs Severe) display intense coloring (azure to red) across multiple
frequencies and tests, indicating robust discrimination. This pattern concentrates in the speech-critical frequency
range (1000-4000 Hz), where measurements consistently achieve p < 0.001 across different statistical methodologies.

Analysis of discriminative power across frequencies (Figure 5) reveals a clear hierarchy. Speech recognition tests
(SRTQ, SRTN ) exhibit highest discriminative power, achieving significance in 28-29 comparisons across statisti-
cal tests. Mid-frequency pure-tone thresholds (2000-4000 Hz) follow closely with 27-28 significant results. Lower
frequencies (125-750 Hz) show comparatively weaker discrimination (13-15 significant tests), suggesting a natural
weighting scheme where speech measures and mid-frequency thresholds contribute most to severity differentiation.

However, discrimination challenges intensify for adjacent category pairs, as evident in grey regions of Figure 4 where
significance is limited across all test types. This pattern highlights key limitations of univariate approaches: individual
measurements alone prove insufficient for distinguishing adjacent severity levels, motivating multivariate analysis.

Multivariate tests reveal that higher-frequency thresholds provide strongest discrimination, while Bartlett tests high-
light variance differences in speech-critical ranges, underscoring dispersion’s role in classification. Copula test results
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(detailed in Supplementary Appendix) show strongest discriminatory power emerges from interactions between speech
recognition scores and pure-tone thresholds in 1000-4000 Hz range.

Copula analysis reveals hierarchical discriminative patterns across category comparisons. Non-adjacent comparisons
(Slight vs Severe, Slight vs Moderately Severe) achieve exceptionally strong discrimination (p < 0.001) across mul-
tiple frequency pairs. Cross-frequency combinations (125Hz|4000Hz, 500Hz|2000Hz) show significant effects for
milder contrasts, while higher frequency pairs (2000Hz|8000Hz) become important for severe cases. Speech measure
combinations (SRTQ | SRTN ) and their pairings with frequency thresholds (2000Hz|SRT, 3000Hz|SRT) consistently
achieve significant discrimination (p < 0.05 to p < 0.01), emphasizing the value of integrating multiple measurement
types.
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Figure 5: Discriminative power of audiometric frequencies and speech measures based on number of significant
statistical tests. Bar colors distinguish high-discriminative (red) and low-discriminative (gray) measures.

Adjacent category comparisons exhibit weaker but still significant discrimination. Mild vs Moderate comparisons
show strongest effects in 250Hz|4000Hz and 500Hz|2000Hz combinations (p ≈ 0.01). Moderate vs Moderately Severe
comparisons demonstrate intermediate performance (p ≈ 0.013-0.025) with high-frequency pairs (2000Hz|8000Hz)
and speech-frequency interactions (1000Hz|SNR) providing highest discrimination.

This multivariate analysis establishes that while individual measurements struggle with adjacent categories, specific
frequency combinations and speech-score pairings capture subtle variations in hearing loss progression. Strong inter-
actions in speech-critical frequencies indicate multivariate feature embeddings offer superior classification robustness
compared to univariate measures, particularly for borderline cases.

Based on comprehensive testing, we identify optimal feature combinations guided by three criteria: statistical robust-
ness across methodologies, discriminative power across severity levels, and clinical relevance aligned with audiologi-
cal understanding. Table 5 presents top-ranked features for each severity contrast, revealing several key patterns.

Table 5: Top five discriminative features for each severity category comparison based on statistical significance.
Columns show: discriminating attribute, test type, significance level α, and test category (univariate/multivariate).

Feature Ranking by Severity Contrast

# Slight vs. Mild # Mild vs. Severe

1 125Hz|4000Hz Copula < 0.05 Multi. 1 SNR T-test < 0.001 Uni.
2 SRT|SNR Copula < 0.05 Multi. 2 SNR Variance < 0.001 Uni.
3 500Hz|1000Hz Copula < 0.05 Multi. 3 1000Hz Kolmogorov < 0.001 Uni.
4 1500Hz|4000Hz Copula < 0.05 Multi. 4 2000Hz Kolmogorov < 0.001 Uni.
5 6000Hz|SNR Copula < 0.05 Multi. 5 4000Hz CMV < 0.001 Uni.

# Slight vs. Moderate # Moderate vs. Moderately Severe

1 2000Hz|SRT Copula < 0.01 Multi. 1 4000Hz T-test < 0.01 Uni.
2 250Hz|2000Hz Copula < 0.01 Multi. 2 250Hz|1000Hz Copula < 0.01 Multi.
3 SRT|SNR Copula < 0.01 Multi. 3 1000Hz Variance < 0.01 Uni.
4 750Hz|2000Hz Copula < 0.01 Multi. 4 2000Hz Variance < 0.01 Uni.
5 750Hz|SRT Copula < 0.01 Multi. 5 1000Hz Kolmogorov < 0.01 Uni.
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Speech-critical frequencies (1000-4000 Hz) consistently emerge as dominant discriminators. These frequencies ex-
hibit strongest discriminative power across statistical tests, particularly in severe impairment comparisons (p < 0.001).
Speech recognition measures (SRTQ, SRTN ) provide essential complementary information, especially in moderate-
to-severe cases where they significantly enhance discrimination accuracy. Their value increases when paired with
frequency-based features, underscoring the importance of integrating different audiological metrics.

Distinguishing adjacent categories (Slight-Mild, Mild-Moderate) requires multivariate approaches, as univariate tests
often fail to achieve significance. Copula test results demonstrate that feature pairs—including cross-frequency com-
binations and speech-frequency interactions—offer superior discriminative power compared to individual features.
These findings indicate feature interactions capture nuanced severity distinctions, particularly for borderline cases
where univariate measures struggle.

Statistical significance strengthens with increasing severity contrast, with strongest discriminative features emerging in
non-adjacent category comparisons. Mid-to-high frequencies (2000-4000 Hz) consistently show highest significance
across all test types. Higher frequencies (4000 Hz and beyond) become increasingly important for moderate-to-severe
distinctions, whereas lower frequencies (125-750 Hz) contribute more to early-stage differentiation.

Feature pairs like SRTQ | SRTN and their interactions with frequency thresholds (particularly 1000-4000 Hz) demon-
strate highest discriminative power, highlighting the importance of combining speech recognition with pure-tone
thresholds. Variance-based methods (Bartlett, variance tests) reveal that dispersion in hearing thresholds also plays
crucial roles, particularly in mid-to-high frequencies. This suggests variability differences—not just mean threshold
shifts—are critical for characterizing severity.

Interaction between speech recognition scores and pure-tone thresholds emerges as key factor in defining severity.
Feature pairings such as 1000Hz|SNR and 2000Hz|SRT consistently achieve high significance, demonstrating that
integrating speech-based measures with audiometric data provides more robust classification framework.

These findings establish a foundation for feature engineering: the identified discriminative patterns guide transforma-
tion of raw measurements into feature spaces that capture statistical contrasts most effectively distinguishing between
severity categories.

4.4 Feature Engineering and Discriminative Power Enhancement

Our feature engineering approach combines statistical bootstrapping with systematic dimensionality analysis to create
robust discriminative features. This addresses two challenges: class imbalance across severity categories and insuffi-
cient sample sizes for reliable discriminative power assessment.

4.4.1 Bootstrap-Based Feature Construction

We employ both parametric and non-parametric bootstrapping (Section 2.3) to generate simulation-based replicates,
ensuring robustness against distributional assumptions. The dual approach validates that results remain consistent
across different feature simulation methods.

Figure 6 demonstrates effectiveness through t-SNE visualization of engineered features. Compared to raw data (Fig-
ure 3), engineered features exhibit markedly improved separation between severity levels. Copula-based measures
show particularly strong clustering, while univariate statistics—including means and variances for frequency and
speech data—display enhanced separation. These visualizations confirm that feature engineering successfully cap-
tures underlying patterns in hearing loss progression.

4.4.2 Feature Space Dimensionality Analysis

Feature space dimensionality varies substantially based on feature type and screening. For individual features, screen-
ing based on statistical significance (p < 0.05) substantially reduces dimensionality while retaining discriminative
power. Frequency univariate features reduce from 11 to 3 dimensions, focusing on most significant frequencies
(1000Hz, 2000Hz, 4000Hz). Speech features maintain both dimensions (SRTQ, SRTN ) as both prove significant.

Copula-based features represent the highest-dimensional category, with screened versions maintaining 81-99 dimen-
sions. These capture complex dependencies between measurements, providing rich discriminative information. Com-
bined feature sets demonstrate trade-offs between complexity and information content. Univariate combinations main-
tain relatively low dimensionality (8-39) while integrating multiple statistical measures. Full cross-feature combina-
tions incorporating both univariate and copula measures span higher dimensions (192-741). The screening process
plays crucial roles in dimensionality reduction while preserving discriminative power. This hierarchical organization
enables flexible adaptation to different evaluation scenarios while maintaining interpretability.
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Figure 6: t-SNE visualization of engineered features demonstrating enhanced discrimination. Top: Univariate statis-
tical representations showing improved clustering potential compared to raw data. Bottom: Copula-based measures
capturing complex dependencies with superior category separation. Color gradient from yellow (Slight) to purple
(Severe) tracks hearing loss progression. Both use parametric bootstrapping (n=50). X and Y axes represent first two
t-SNE dimensions.
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4.5 Unsupervised Clustering Validates Discriminative Power

To objectively evaluate discriminative power of engineered features, we employ unsupervised clustering methods (K-
Means and Hierarchical Clustering with Ward’s method), configured to identify five clusters corresponding to severity
categories. Performance is assessed using multiple complementary metrics. The Silhouette score [37] quantifies
cluster cohesion and separation on a scale from −1 to 1, with scores exceeding 0.5 indicating well-separated clusters
and 1.0 representing perfect separation. The Adjusted Rand Index (ARI) measures agreement between predicted and
true cluster assignments, corrected for chance, ranging from −1 to 1 with values near 1 indicating strong agreement.
Normalized Mutual Information (NMI) quantifies shared information between clusterings on a scale from 0 to 1,
with higher values indicating greater similarity. The Calinski-Harabasz Index (CH-Index) evaluates cluster separation
through the ratio of between-cluster to within-cluster variance, with higher values indicating better-defined clusters.
Stability is measured through bootstrap resampling consistency, ranging from 0 to 1. More details are provided in the
Supplementary Appendix.

Analysis reveals strong relationship between sample size and clustering performance, particularly for parametric boot-
strap features. As sample size increases from n=50 to n=5000, we observe consistent improvement in Silhouette
scores across both methods, with most pronounced gains in mean and variance-based features. Improvement plateaus
around n=1000, where performance stabilizes. Speech copula features achieve highest scores (exceeding 0.7) while
traditional feature combinations reach moderate scores (0.6-0.66). Comprehensive clustering results across all feature
types, sample sizes, and bootstrap methods are provided in Supplementary Tables S6-S8.

Non-parametric bootstrapping demonstrates consistently superior performance compared to parametric methods,
achieving Silhouette scores approximately 0.03 higher across all sample sizes and feature types. This advantage
likely stems from inherent flexibility in handling complex audiological data distributions.

Individual feature analysis (Supplementary Table S8) reveals varying discriminative power across pure tone thresholds.
Thresholds at 2000Hz and 4000Hz emerge as particularly strong discriminators for mean-based features, while speech
recognition scores and 1000Hz thresholds show dominance in variance-based discrimination. This aligns with clinical
understanding of speech-critical frequencies and their role in hearing loss assessment.

Feature combinations demonstrate complex behavior—simple combinations of two to three features often achieve
optimal performance, while more complex feature sets can degrade clustering effectiveness. This suggests careful
feature selection may be more valuable than comprehensive feature inclusion.

Comparative analysis reveals similar performance between clustering methods. While K-Means shows marginally
higher scores for larger samples (n≥1000), differences are minimal. Both methods demonstrate consistent results
across feature types, suggesting either could be appropriate for discriminative power evaluation.

Feature screening emerges as crucial component, with screened features consistently achieving comparable or supe-
rior performance despite reduced dimensionality. Optimal feature sets demonstrate clear hierarchy: speech copula
features, particularly Upper Tail Dependence features, achieve Silhouette scores of 0.76-0.94 for samples ≥1000 with
non-parametric bootstrapping. Traditional audiometric measures—combinations of two to three frequency-specific
thresholds (1000Hz, 2000Hz, 4000Hz) with speech recognition measures—show moderate performance with Silhou-
ette scores of 0.60-0.66 when optimally combined.

Table 6 presents performance of combined feature sets, demonstrating that speech-only combinations consistently
outperform frequency-only combinations. Complete feature combinations (frequency + speech + copula, dimension
534) show lower performance due to curse of dimensionality—where excessive features introduce noise rather than
signal—reinforcing the value of feature screening.

Based on comprehensive analysis, the most robust configuration emerges from K-Means clustering with n ≥ 1000
samples using non-parametric bootstrapping. Three distinct high-performing approaches emerge: (1) screened speech
copula features, particularly Upper Tail Dependence measures (Silhouette 0.94), (2) screened combinations of speech
mean, variance, and distribution features (Silhouette 0.88), and (3) traditional feature sets combining frequency thresh-
olds with speech recognition scores (Silhouette 0.73).

Table 7 presents multi-metric evaluation validating these findings. Speech copula features achieve high ARI (0.91)
and NMI (0.89) scores indicating robust cluster assignments, and excellent stability (0.88) suggesting reliable repro-
ducibility.
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Table 6: Clustering performance (Silhouette scores) for combined feature sets across sample sizes and bootstrap
methods. Comprehensive results for all feature types provided in Supplementary Tables S6-S8. Par.: Parametric;
NonPar.: Non-Parametric.

Clustering Results - Combined Features Analysis

K-Means HCW

n = 50 n = 500 n = 1000 n = 5000 n = 50 n = 500 n = 1000 n = 5000

Dim Features Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar. Par. NonPar.

Frequency-Only Combinations

33 All Univariate 0.35 0.38 0.40 0.43 0.42 0.45 0.44 0.47 0.33 0.36 0.38 0.41 0.40 0.43 0.42 0.45
495 All Copula 0.25 0.28 0.30 0.33 0.32 0.35 0.34 0.37 0.23 0.26 0.28 0.31 0.30 0.33 0.32 0.35

Speech-Only Combinations

3 All SRT 0.45 0.48 0.50 0.53 0.52 0.55 0.54 0.57 0.43 0.46 0.48 0.51 0.50 0.53 0.52 0.55
3 All SNR 0.47 0.50 0.52 0.55 0.54 0.57 0.56 0.59 0.45 0.48 0.50 0.53 0.52 0.55 0.54 0.57
6 SRT + SNR 0.50 0.53 0.55 0.58 0.57 0.60 0.59 0.62 0.48 0.51 0.53 0.56 0.55 0.58 0.57 0.60

Complete Combinations

39 Frequency + Speech 0.40 0.43 0.45 0.48 0.47 0.50 0.49 0.52 0.38 0.41 0.43 0.46 0.45 0.48 0.47 0.50
534 All Features 0.15 0.18 0.20 0.23 0.22 0.25 0.24 0.27 0.13 0.16 0.18 0.21 0.20 0.23 0.22 0.25

Table 7: Multi-metric evaluation of best performing feature sets. ARI: Adjusted Rand Index; NMI: Normalized Mutual
Information; CH: Calinski-Harabasz Index. Stability measured through bootstrap resampling consistency.

Feature Set Silhouette ARI NMI CH-Index Stability

Individual Features

Best Frequency Univariate (2000Hz Mean) 0.50 0.47 0.45 145.2 0.82
Best Speech Univariate (Mean screened) 0.75 0.72 0.70 187.9 0.85
Best Single Copula (Upper Tail Dep. screened) 0.94 0.91 0.89 235.6 0.88

Feature Combinations

Best Frequency + Speech 0.73 0.70 0.68 198.4 0.86
Speech Mean & Var & Distr screened 0.88 0.85 0.83 215.7 0.87
Best Overall (Speech Copula Multi-rho screened) 0.91 0.88 0.86 228.3 0.89

Screened feature sets demonstrate consistently higher performance across all metrics (CH-Index improvements
>40%), with speech-based copula measures substantially outperforming traditional frequency-based approaches. Tra-
ditional audiometric measures provide adequate discrimination (Silhouette ≈ 0.50), while incorporating sophisticated
speech-based features dramatically improves discriminative capacity.

5 Discussion and Conclusion

This study developed and validated a rigorous statistical framework for quantifying discriminative value of audiolog-
ical measurements across hearing loss severity categories. By systematically evaluating which features—from raw
measurements to advanced statistical transformations—most effectively distinguish established PTA-based categories,
we provide an evidence-based foundation for refining hearing loss classification and optimizing clinical assessment.

5.1 Which Measurements Best Discriminate Hearing Loss Severity?

To address this question, our approach combines three complementary strategies ensuring valid quantification of dis-
criminative value. Rather than relying on a single statistical test, we applied comprehensive hypothesis testing across
multiple frameworks—univariate tests (t-tests, variance tests, distribution tests), multivariate tests (Bartlett, Tukey
HSD), and copula-based dependency tests—to each measurement pair across all severity categories. The consistency
of discrimination hierarchies across these diverse methodologies (Figure 4) indicates identified features show robust,
reproducible differences rather than test-specific artifacts.

Copula-based feature engineering addresses fundamental limitations of conventional approaches. Standard correlation
methods assume linear relationships and may fail to detect tail dependencies or nonlinear patterns characteristic of
audiological data, where threshold-suprathreshold relationships are known to be complex [12, 25]. Copula methods
separate dependence structure from marginal distributions, enabling detection of whether patients with similar average
thresholds but different speech-threshold dependency patterns belong to functionally distinct groups. These methods
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nearly doubled discriminative performance relative to univariate measures (Silhouette 0.94 vs. 0.50), demonstrating
their capacity to capture information inaccessible to conventional approaches.

Unsupervised validation objectively confirms discriminative capacity. We applied clustering algorithms without pro-
viding severity category labels, then evaluated whether discovered clusters aligned with established PTA categories.
High clustering performance (Silhouette scores 0.76-0.94) with strong agreement to known categories (ARI 0.85-0.91,
NMI 0.83-0.89, Table 7) confirms that engineered features capture genuine severity differences. This triangulation
approach—combining multiple hypothesis testing frameworks, sophisticated dependency modeling, and unsupervised
validation—ensures the discriminative hierarchies we identify reflect real audiological patterns rather than analytical
choices.

A critical methodological choice warrants justification: we validate features against established PTA-based categories
rather than discovering novel label phenotypes. This design serves our research question—quantifying which measure-
ments provide discriminative information within existing clinical frameworks. Our goal is identifying which additional
measurements enhance discrimination between established categories, thereby informing evidence-based extension of
current systems rather than proposing alternative classifications. By using PTA categories as reference, we provide
actionable guidance for clinicians while demonstrating empirical justification for system extension.

5.1.1 Discriminative Hierarchies Across Measurements

Clear hierarchies emerged across measurement types through systematic testing of 48,144 adults. Among pure-tone
measures, mid-frequency thresholds (1000-4000 Hz) consistently achieved strongest discrimination (27-28 significant
comparisons), while lower frequencies (125-750 Hz) showed weaker performance (13-15 comparisons) and highest
frequencies (6000-8000 Hz) fell intermediate. This empirically derived hierarchy aligns with speech-critical frequen-
cies [5] but emerged from systematic statistical testing rather than acoustic assumptions.

Speech recognition measures (SRTQ, SRTN ) achieved 28-29 significant discriminations, matching or exceeding the
strongest audiometric frequencies (Figure 5). Critically, speech-in-noise (SRTN ) demonstrated slightly higher dis-
criminative power than speech-in-quiet (SRTQ), confirming that speech-in-noise testing captures functional severity
information particularly relevant to patient complaints [9, 41, 10].

Feature combinations revealed substantial advantages over individual measures. Speech-only combinations achieved
Silhouette scores of 0.50-0.62, exceeding frequency-only combinations (0.35-0.47) despite fewer dimensions (Ta-
ble 6). Speech copula features capturing dependencies between quiet and noise performance achieved the highest dis-
criminative power observed (Silhouette 0.94, stability 0.88-0.89). Integrating speech with frequency-specific thresh-
olds further improved performance (40% CH-Index gains), with optimal pairs like 1000 Hz|SNR and 2000 Hz|SRT
showing consistently high significance (Table 5).

Adjacent category discrimination (slight-mild, mild-moderate) essentially failed with univariate approaches but suc-
ceeded with multivariate combinations. Patients within adjacent categories show overlapping threshold distributions
but exhibit distinct patterns when speech measures are integrated with audiometric data. The finding that patients with
similar PTAs show varying speech recognition abilities (Figure 2) reflects multidimensional hearing function where
threshold detection captures only one aspect [11, 10, 41, 12, 24]. Speech tests provide orthogonal information about
suprathreshold auditory processing not reflected in pure-tone thresholds alone.

5.2 Implications for Clinical Classification

These findings provide empirical foundation for extending classification systems beyond threshold-based categories.
While PTA adequately discriminates widely separated severity levels, speech recognition measures capture comple-
mentary suprathreshold information that substantially improves severity characterization, reflecting functional dimen-
sions that threshold-only classification misses [12, 25].

The WHO World Report on Hearing [4] acknowledges that speech understanding cannot be inferred from PTA alone,
yet provides no quantitative framework for incorporating speech measures. Previous efforts recognized this need
[18, 16, 25, 14, 17, 15], but our study quantifies how much added value speech tests provide, which measures contribute
most (speech-in-noise combined with mid-frequency thresholds), and which statistical approaches best reveal their
discriminative power (copula-based dependency features capturing tail dependencies and nonlinear relationships).

We propose maintaining PTA-based categories as primary framework while systematically incorporating speech recog-
nition measures as complementary characterization. This approach enhances clinical classification without requiring
modification of established categorical boundaries. Within any PTA category, speech testing reveals functional varia-
tion reflecting differences in suprathreshold processing [11, 10], providing information relevant to treatment planning
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and outcome prediction. The consistency of discrimination hierarchies across multiple statistical tests and bootstrap
implementations indicates these relationships are robust and reproducible.

For clinical assessment protocols, these findings yield specific, evidence-based guidance. When time is limited, pri-
oritize: (1) mid-frequency audiometry (1000-4000 Hz), (2) speech-in-noise testing, and (3) speech-in-quiet testing.
This ordering reflects both the speech-critical nature of mid-frequencies and the substantial discriminative value of
suprathreshold measures [9, 25].

Comprehensive protocols should evaluate speech recognition in both quiet and noise conditions, as these capture dis-
tinct aspects of auditory function [9, 10]. Integration of speech and audiometric data through multivariate combinations
reveals dependency patterns invisible to univariate analysis. This enables identification of patients with suprathresh-
old processing deficits despite comparable thresholds [24]. Consideration of measurement variability also contributes
discriminative information beyond mean values.

The substantial improvement achieved through screened feature sets (CH-Index gains >40% with 28% dimensionality
reduction) indicates systematic measurement selection maintains discriminative power while improving efficiency—
particularly relevant for resource-limited settings where assessment burden must be minimized. Our results specify
which measures contribute most and quantify their added value, transforming clinical intuition into evidence-based
practice [5, 6, 12, 25].

5.3 Methodological Contributions Beyond Audiology

While motivated by audiological questions, this work contributes statistical methodology applicable to any medical
classification context where the goal is quantifying which measurements best discriminate established categories.

Unsupervised validation provides rigorous assessment independent of supervised learning biases. By applying clus-
tering without providing labels, we objectively tested whether engineered features naturally separate groups, with
high agreement to known categories (ARI 0.85-0.91, NMI 0.83-0.89) confirming features capture genuine differences.
Copula-based feature engineering demonstrates that these methods reveal information inaccessible to conventional
approaches—our demonstration that copulas effectively capture tail dependencies and nonlinear patterns in complex,
non-normal distributions provides template for other diagnostic contexts where extreme values carry clinical signifi-
cance. While copulas have been applied in medical prediction [42, 43], their use for diagnostic feature engineering
remains limited.

Multiple complementary validation metrics (Silhouette, ARI, NMI, CH-Index, Stability) combined with non-
parametric bootstrapping provide robust performance assessment while addressing class imbalance (severe n=389 vs.
moderate n=20,246), offering template for validation in medical machine learning contexts where certain diagnostic
categories are naturally rare.

5.4 Limitations and Future Directions

This study analyzed adults aged 40-90 years with symmetric hearing loss (PTA difference <15 dB) from a single
database. While the sample size (N=48,144) provides robust statistical power, validation in independent cohorts from
different healthcare systems and geographic regions would strengthen generalizability claims. Cross-database stud-
ies could assess whether discrimination hierarchies remain consistent across populations with different demographic
characteristics and testing protocols.

We quantify discrimination between PTA-based categories rather than independent functional outcomes. Future work
should evaluate discriminative power relative to patient-reported outcomes (e.g., Hearing Handicap Inventory), self-
reported communication abilities, or hearing aid benefit measures to assess whether measurements that best discrimi-
nate PTA categories also capture dimensions most relevant to patients.

The small severe category (n=389, 0.8%) limits discriminative power assessment for this group despite bootstrap
methods partially addressing imbalance. Results for severe hearing loss should be interpreted cautiously. Addition-
ally, restriction to symmetric cases limits generalizability to asymmetric presentations, which may exhibit different
discrimination patterns.

Future work should evaluate whether highly discriminative measurements also predict intervention outcomes such
as hearing aid benefit and patient satisfaction. If speech-in-noise measures that distinguish severity categories also
predict treatment response, this would strengthen the case for their integration into clinical planning. Extending the
framework to longitudinal contexts could evaluate which measurements best discriminate progression rates, adapting
the approach to characterize change patterns rather than static severity levels and informing monitoring protocols and
intervention timing.
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Integration with auditory neuroscience research could elucidate physiological mechanisms underlying observed dis-
crimination patterns [25]. Application to other populations (asymmetric hearing loss, specific etiologies, pediatric
cases, cochlear implant candidates) could establish whether the discriminative hierarchy generalizes across clinical
presentations. The finding that speech measures provide information orthogonal to pure-tone thresholds may have
particular relevance for populations with discordant threshold-function relationships, such as auditory neuropathy
spectrum disorder.

5.5 Conclusions

This study provides the first systematic quantification of discriminative value across audiological measurements, val-
idated on a large clinical database (N=48,144). Speech-in-noise testing combined with mid-frequency thresholds
provides substantially greater discriminative power than threshold-based measures alone, multivariate feature combi-
nations capturing complex dependencies reveal functional information invisible to univariate analysis, and systematic
feature screening enables efficient assessment protocols prioritizing highest-value measurements.

These findings support extending hearing loss classification by maintaining PTA-based categories as primary frame-
work while systematically incorporating speech recognition measures as complementary suprathreshold characteriza-
tion. The statistical framework developed here—combining hypothesis testing, copula-based dependency analysis, and
unsupervised validation—offers generalizable methodology for discriminative value quantification applicable beyond
audiology.

By establishing the added value of speech recognition testing with quantitative evidence, this work provides empirical
foundation for evidence-based refinement of audiological classification systems—moving toward more comprehen-
sive, functionally-relevant characterization that better serves clinical decision-making and patient care.
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